Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts.

Identifieur interne : 001983 ( Main/Exploration ); précédent : 001982; suivant : 001984

An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts.

Auteurs : Farnusch Kaschani [Allemagne] ; Mohammed Shabab ; Tolga Bozkurt ; Takayuki Shindo ; Sebastian Schornack ; Christian Gu ; Muhammad Ilyas ; Joe Win ; Sophien Kamoun ; Renier A L. Van Der Hoorn

Source :

RBID : pubmed:20940351

Descripteurs français

English descriptors

Abstract

Since the leaf apoplast is a primary habitat for many plant pathogens, apoplastic proteins are potent, ancient targets for apoplastic effectors secreted by plant pathogens. So far, however, only a few apoplastic effector targets have been identified and characterized. Here, we discovered that the papain-like cysteine protease C14 is a new common target of EPIC1 and EPIC2B, two apoplastic, cystatin-like proteins secreted by the potato (Solanum tuberosum) late blight pathogen Phytophthora infestans. C14 is a secreted protease of tomato (Solanum lycopersicum) and potato typified by a carboxyl-terminal granulin domain. The EPIC-C14 interaction occurs at a wide pH range and is stronger than the previously described interactions of EPICs with tomato defense proteases PIP1 and RCR3. The selectivity of the EPICs is also different when compared with the AVR2 effector of the fungal tomato pathogen Cladosporium fulvum, which targets PIP1 and RCR3, and only at apoplastic pH. Importantly, silencing of C14 increased susceptibility to P. infestans, demonstrating that this protease plays a role in pathogen defense. Although C14 is under conservative selection in tomato, it is under diversifying selection in wild potato species (Solanum demissum, Solanum verrucosum, and Solanum stoliniferum) that are the natural hosts of P. infestans. These data reveal a novel effector target in the apoplast that contributes to immunity and is under diversifying selection, but only in the natural host of the pathogen.

DOI: 10.1104/pp.110.158030
PubMed: 20940351
PubMed Central: PMC2996022


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts.</title>
<author>
<name sortKey="Kaschani, Farnusch" sort="Kaschani, Farnusch" uniqKey="Kaschani F" first="Farnusch" last="Kaschani">Farnusch Kaschani</name>
<affiliation wicri:level="3">
<nlm:affiliation>Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shabab, Mohammed" sort="Shabab, Mohammed" uniqKey="Shabab M" first="Mohammed" last="Shabab">Mohammed Shabab</name>
</author>
<author>
<name sortKey="Bozkurt, Tolga" sort="Bozkurt, Tolga" uniqKey="Bozkurt T" first="Tolga" last="Bozkurt">Tolga Bozkurt</name>
</author>
<author>
<name sortKey="Shindo, Takayuki" sort="Shindo, Takayuki" uniqKey="Shindo T" first="Takayuki" last="Shindo">Takayuki Shindo</name>
</author>
<author>
<name sortKey="Schornack, Sebastian" sort="Schornack, Sebastian" uniqKey="Schornack S" first="Sebastian" last="Schornack">Sebastian Schornack</name>
</author>
<author>
<name sortKey="Gu, Christian" sort="Gu, Christian" uniqKey="Gu C" first="Christian" last="Gu">Christian Gu</name>
</author>
<author>
<name sortKey="Ilyas, Muhammad" sort="Ilyas, Muhammad" uniqKey="Ilyas M" first="Muhammad" last="Ilyas">Muhammad Ilyas</name>
</author>
<author>
<name sortKey="Win, Joe" sort="Win, Joe" uniqKey="Win J" first="Joe" last="Win">Joe Win</name>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
</author>
<author>
<name sortKey="Van Der Hoorn, Renier A L" sort="Van Der Hoorn, Renier A L" uniqKey="Van Der Hoorn R" first="Renier A L" last="Van Der Hoorn">Renier A L. Van Der Hoorn</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20940351</idno>
<idno type="pmid">20940351</idno>
<idno type="doi">10.1104/pp.110.158030</idno>
<idno type="pmc">PMC2996022</idno>
<idno type="wicri:Area/Main/Corpus">001822</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001822</idno>
<idno type="wicri:Area/Main/Curation">001822</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001822</idno>
<idno type="wicri:Area/Main/Exploration">001822</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts.</title>
<author>
<name sortKey="Kaschani, Farnusch" sort="Kaschani, Farnusch" uniqKey="Kaschani F" first="Farnusch" last="Kaschani">Farnusch Kaschani</name>
<affiliation wicri:level="3">
<nlm:affiliation>Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shabab, Mohammed" sort="Shabab, Mohammed" uniqKey="Shabab M" first="Mohammed" last="Shabab">Mohammed Shabab</name>
</author>
<author>
<name sortKey="Bozkurt, Tolga" sort="Bozkurt, Tolga" uniqKey="Bozkurt T" first="Tolga" last="Bozkurt">Tolga Bozkurt</name>
</author>
<author>
<name sortKey="Shindo, Takayuki" sort="Shindo, Takayuki" uniqKey="Shindo T" first="Takayuki" last="Shindo">Takayuki Shindo</name>
</author>
<author>
<name sortKey="Schornack, Sebastian" sort="Schornack, Sebastian" uniqKey="Schornack S" first="Sebastian" last="Schornack">Sebastian Schornack</name>
</author>
<author>
<name sortKey="Gu, Christian" sort="Gu, Christian" uniqKey="Gu C" first="Christian" last="Gu">Christian Gu</name>
</author>
<author>
<name sortKey="Ilyas, Muhammad" sort="Ilyas, Muhammad" uniqKey="Ilyas M" first="Muhammad" last="Ilyas">Muhammad Ilyas</name>
</author>
<author>
<name sortKey="Win, Joe" sort="Win, Joe" uniqKey="Win J" first="Joe" last="Win">Joe Win</name>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
</author>
<author>
<name sortKey="Van Der Hoorn, Renier A L" sort="Van Der Hoorn, Renier A L" uniqKey="Van Der Hoorn R" first="Renier A L" last="Van Der Hoorn">Renier A L. Van Der Hoorn</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Blotting, Western (MeSH)</term>
<term>DNA, Plant (MeSH)</term>
<term>Gene Silencing (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Peptide Hydrolases (genetics)</term>
<term>Peptide Hydrolases (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Phytophthora infestans (pathogenicity)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Solanum (enzymology)</term>
<term>Solanum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Extinction de l'expression des gènes (MeSH)</term>
<term>Peptide hydrolases (génétique)</term>
<term>Peptide hydrolases (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phytophthora infestans (pathogénicité)</term>
<term>RT-PCR (MeSH)</term>
<term>Solanum (enzymologie)</term>
<term>Solanum (microbiologie)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Technique de Western (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Peptide Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptide Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Solanum</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Solanum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Peptide hydrolases</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Solanum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Solanum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Peptide hydrolases</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Blotting, Western</term>
<term>Gene Silencing</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN des plantes</term>
<term>Données de séquences moléculaires</term>
<term>Extinction de l'expression des gènes</term>
<term>Phylogenèse</term>
<term>RT-PCR</term>
<term>Séquence nucléotidique</term>
<term>Technique de Western</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Since the leaf apoplast is a primary habitat for many plant pathogens, apoplastic proteins are potent, ancient targets for apoplastic effectors secreted by plant pathogens. So far, however, only a few apoplastic effector targets have been identified and characterized. Here, we discovered that the papain-like cysteine protease C14 is a new common target of EPIC1 and EPIC2B, two apoplastic, cystatin-like proteins secreted by the potato (Solanum tuberosum) late blight pathogen Phytophthora infestans. C14 is a secreted protease of tomato (Solanum lycopersicum) and potato typified by a carboxyl-terminal granulin domain. The EPIC-C14 interaction occurs at a wide pH range and is stronger than the previously described interactions of EPICs with tomato defense proteases PIP1 and RCR3. The selectivity of the EPICs is also different when compared with the AVR2 effector of the fungal tomato pathogen Cladosporium fulvum, which targets PIP1 and RCR3, and only at apoplastic pH. Importantly, silencing of C14 increased susceptibility to P. infestans, demonstrating that this protease plays a role in pathogen defense. Although C14 is under conservative selection in tomato, it is under diversifying selection in wild potato species (Solanum demissum, Solanum verrucosum, and Solanum stoliniferum) that are the natural hosts of P. infestans. These data reveal a novel effector target in the apoplast that contributes to immunity and is under diversifying selection, but only in the natural host of the pathogen.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20940351</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>154</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2010</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts.</ArticleTitle>
<Pagination>
<MedlinePgn>1794-804</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.110.158030</ELocationID>
<Abstract>
<AbstractText>Since the leaf apoplast is a primary habitat for many plant pathogens, apoplastic proteins are potent, ancient targets for apoplastic effectors secreted by plant pathogens. So far, however, only a few apoplastic effector targets have been identified and characterized. Here, we discovered that the papain-like cysteine protease C14 is a new common target of EPIC1 and EPIC2B, two apoplastic, cystatin-like proteins secreted by the potato (Solanum tuberosum) late blight pathogen Phytophthora infestans. C14 is a secreted protease of tomato (Solanum lycopersicum) and potato typified by a carboxyl-terminal granulin domain. The EPIC-C14 interaction occurs at a wide pH range and is stronger than the previously described interactions of EPICs with tomato defense proteases PIP1 and RCR3. The selectivity of the EPICs is also different when compared with the AVR2 effector of the fungal tomato pathogen Cladosporium fulvum, which targets PIP1 and RCR3, and only at apoplastic pH. Importantly, silencing of C14 increased susceptibility to P. infestans, demonstrating that this protease plays a role in pathogen defense. Although C14 is under conservative selection in tomato, it is under diversifying selection in wild potato species (Solanum demissum, Solanum verrucosum, and Solanum stoliniferum) that are the natural hosts of P. infestans. These data reveal a novel effector target in the apoplast that contributes to immunity and is under diversifying selection, but only in the natural host of the pathogen.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kaschani</LastName>
<ForeName>Farnusch</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shabab</LastName>
<ForeName>Mohammed</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bozkurt</LastName>
<ForeName>Tolga</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shindo</LastName>
<ForeName>Takayuki</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schornack</LastName>
<ForeName>Sebastian</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gu</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ilyas</LastName>
<ForeName>Muhammad</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Win</LastName>
<ForeName>Joe</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kamoun</LastName>
<ForeName>Sophien</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>van der Hoorn</LastName>
<ForeName>Renier A L</ForeName>
<Initials>RA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>HQ426918</AccessionNumber>
<AccessionNumber>HQ426919</AccessionNumber>
<AccessionNumber>HQ426920</AccessionNumber>
<AccessionNumber>HQ426921</AccessionNumber>
<AccessionNumber>HQ426922</AccessionNumber>
<AccessionNumber>HQ426923</AccessionNumber>
<AccessionNumber>HQ426924</AccessionNumber>
<AccessionNumber>HQ426925</AccessionNumber>
<AccessionNumber>HQ426926</AccessionNumber>
<AccessionNumber>HQ426927</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>10</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032322" MajorTopicYN="N">Solanum</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20940351</ArticleId>
<ArticleId IdType="pii">pp.110.158030</ArticleId>
<ArticleId IdType="doi">10.1104/pp.110.158030</ArticleId>
<ArticleId IdType="pmc">PMC2996022</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2928-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19794118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8807-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10922039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Dec;19(12):1420-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17153926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):364-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Aug;93(4):1486-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Endocrinol. 1998 Aug;158(2):145-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9771457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):1009-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 18;279(25):26370-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1329-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Sep;20(9):1092-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:135-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:171-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 9;97(10):5322-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):380-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 1;450(7166):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Sep;8(5):677-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1990 May;79(3):360-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Jun;21(6):820-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18624645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Apr;22(4):1107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15689528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2001 Jun;44(3):368-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11444695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1999 Dec;12(12):1114-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10624019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2008 Sep;4(9):557-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):1169-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1654-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Sep;42(9):894-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11577182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1626-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1170-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15266051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Jun;87(2):431-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1948-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1783-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15845874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):930-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1986 Sep;3(5):418-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3444411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jul;138(3):1785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2000 Aug;7(8):569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11048948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1996 Feb;30(4):755-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8624407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17531802</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Cologne</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Cologne</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bozkurt, Tolga" sort="Bozkurt, Tolga" uniqKey="Bozkurt T" first="Tolga" last="Bozkurt">Tolga Bozkurt</name>
<name sortKey="Gu, Christian" sort="Gu, Christian" uniqKey="Gu C" first="Christian" last="Gu">Christian Gu</name>
<name sortKey="Ilyas, Muhammad" sort="Ilyas, Muhammad" uniqKey="Ilyas M" first="Muhammad" last="Ilyas">Muhammad Ilyas</name>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
<name sortKey="Schornack, Sebastian" sort="Schornack, Sebastian" uniqKey="Schornack S" first="Sebastian" last="Schornack">Sebastian Schornack</name>
<name sortKey="Shabab, Mohammed" sort="Shabab, Mohammed" uniqKey="Shabab M" first="Mohammed" last="Shabab">Mohammed Shabab</name>
<name sortKey="Shindo, Takayuki" sort="Shindo, Takayuki" uniqKey="Shindo T" first="Takayuki" last="Shindo">Takayuki Shindo</name>
<name sortKey="Van Der Hoorn, Renier A L" sort="Van Der Hoorn, Renier A L" uniqKey="Van Der Hoorn R" first="Renier A L" last="Van Der Hoorn">Renier A L. Van Der Hoorn</name>
<name sortKey="Win, Joe" sort="Win, Joe" uniqKey="Win J" first="Joe" last="Win">Joe Win</name>
</noCountry>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Kaschani, Farnusch" sort="Kaschani, Farnusch" uniqKey="Kaschani F" first="Farnusch" last="Kaschani">Farnusch Kaschani</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001983 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001983 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20940351
   |texte=   An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20940351" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024